Para gerar modelo Autoregressivo, temos o comando aryule () e também podemos usar o modelo AR de filtrosEstimating. Mas como faço para gerar modelo MA Por exemplo, alguém pode mostrar como gerar o modelo MA (20), não consegui encontrar nenhuma técnica apropriada para fazê-lo. O ruído é gerado a partir de um mapa não-linear. Assim, o modelo MA irá regredir em termos de epsilon. Q1: Será extremamente útil se o código e a forma funcional de um modelo MA forem mostrados de preferência MA (20) usando o modelo de ruído acima. Q2: É assim que eu gerei um AR (20) usando barulho aleatório, mas não sei como usar a equação acima como o ruído em vez de usar rand para ambos MA e AR perguntou 15 de agosto 14 às 17:30 Meu problema é o uso de filtro. Não estou familiarizado com o conceito de função de transferência, mas você mencionou que o numerador B39s são os coeficientes MA, portanto o B deve ser os 20 elementos e não os A39s. Em seguida, let39s dizem que o modelo tem uma intercepção de 0,5, você pode mostrar com o código como eu posso criar um modelo de MA com 0,5 intercepção (como mencionar a intercepção no filtro () e usando a entrada definida na minha pergunta, por favor Obrigado Você é o link do filtro, que realmente eliminou as dúvidas sobre como usar o filtro. Ndash SKM 19 de agosto 14 às 16:36 No filtro quoty (b, a, X) filtra os dados no vetor X com o filtro descrito pelo vetor do coeficiente de numerador B e o vetor do coeficiente de denominação a. Se a (1) não é igual a 1, o filtro normaliza os coeficientes de filtro por um (1). Se a (1) é igual a 0, o filtro retorna um erro. quot (mathworkshelpmatlabreffilter. html) isto é A área do problema como eu não compreendo como especificar o a, b (coeficientes de filtro) quando há uma interceptação de dizer 0,5 ou intercepto de 1.Pode você mostrar um exemplo de MA com filtro e uma interceptação diferente de zero usando a entrada Que eu mencionei na Question ndash SKM 19 de agosto 14 às 17: 45Tendo uma matriz de séries temporais para 8 Variáveis com cerca de 2500 pontos (10 anos de sexta-feira) e gostaria de calcular a média, a variância, o aspeto e a curtose em média móvel. Digamos quadros 100 252 504 756 - Gostaria de calcular as quatro funções acima em cada um dos quadros (time-), diariamente - de modo que o retorno para o dia 300 no caso com 100 dias de quadro seria significante Kurtosis de desvio de variância do período dia 201-dia300 (100 dias no total). e assim por diante. Eu sei que isso significa que eu obteria uma saída de matriz, e o primeiro número de quadros seria NaNs, mas não consigo descobrir a indexação necessária para fazer isso. Perguntou Mar 24 14 às 0:07 Esta é uma questão interessante porque acho que a solução ideal é diferente da média do que é para as outras estatísticas da amostra. Eu forneci um exemplo de simulação abaixo que você pode trabalhar. Primeiro, escolha alguns parâmetros arbitrários e simule alguns dados: Para a média, use o filtro para obter uma média móvel: pensei inicialmente em resolver este problema usando conv da seguinte maneira: Mas como PhilGoddard apontou nos comentários, a abordagem do filtro evita a Necessidade do loop. Observe também que Ive escolheu para tornar as datas na matriz de saída correspondem às datas em X, então no trabalho posterior você pode usar os mesmos índices para ambos. Assim, as primeiras observações do WindowLength-1 no MeanMA serão nan. Para a variação, não consigo ver como usar qualquer filtro ou conv ou mesmo uma soma executória para tornar as coisas mais eficientes, então, em vez disso, eu executo o cálculo manualmente em cada iteração: Poderíamos acelerar as coisas levando ao fato de que já temos Calculou a média móvel média. Basta substituir a linha de loop dentro do acima com: No entanto, duvido que isso faça muita diferença. Se alguém pode ver uma maneira inteligente de usar o filtro ou o conv para obter a variável da janela em movimento, fique muito interessado em vê-lo. Eu deixo o caso de skewness e kurtosis para o OP, uma vez que eles são essencialmente o mesmo que o exemplo de variância, mas com a função apropriada. Um ponto final: se você estivesse convertendo o acima em uma função geral, você poderia passar em uma função anônima como um dos argumentos, então você teria uma rotina média móvel que funcione para escolha arbitrária de transformações. Final, ponto final: para uma seqüência de comprimentos de janela, basta fazer um loop sobre todo o bloco de código para cada comprimento de janela. Sim, a função de filtro é realmente melhor para o meio - mas eu queria fazer isso para várias funções diferentes, não só a média. Acabei de publicar minha resposta porque funcionou para mim e pensei que poderia ajudar alguém também. Ndash Dexter Morgan 15 de abril 14 em 12: 40Documentação é a média incondicional do processo, e x03C8 (L) é um polinômio de operador racional, de grau infinito, (1 x03C8 1 L x03C8 2 L 2 x2026). Nota: A propriedade Constante de um objeto modelo arima corresponde a c. E não o meio incondicional 956. Pela decomposição de Wolds 1. A equação 5-12 corresponde a um processo estocástico estacionário desde que os coeficientes x03C8 i sejam absolutamente cúmplices. Este é o caso quando o polinômio AR, x03D5 (L). É estável. Significando que todas as suas raízes estão fora do círculo da unidade. Além disso, o processo é causal desde que o polinômio MA seja reversível. Significando que todas as suas raízes estão fora do círculo da unidade. Econometria Toolbox reforça a estabilidade e reversibilidade dos processos ARMA. Quando você especifica um modelo ARMA usando o arima. Você obtém um erro se você inserir coeficientes que não correspondem a um polinômio AR estável ou um polinômio de MA reversível. Da mesma forma, a estimativa impõe restrições de estacionaridade e inversão durante a estimativa. Referências 1 Wold, H. Um estudo na análise de séries temporárias estacionárias. Uppsala, Suécia: almqvist amp Wiksell, 1938. Selecione seu país
No comments:
Post a Comment